If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

  • A

    $\left| z \right|\, < \,\frac{3}{2}$

  • B

    $\left| z \right|\, > \,\frac{3}{2}$

  • C

    $\left| z \right|\, > {2}$

  • D

    $\left| z \right|\, < {2}$

Similar Questions

The number ${\log _2}7$ is

  • [IIT 1990]

If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval

The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is

  • [IIT 2012]

$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to